KERAMIK

        Dosen pembimbing : Bambang Sukarno Putra, S.TP.
Seputar Keramik
(Kelompok 2)

             Oleh :

  •  Ami Muliawati                               1605106010018
  •  Fadilah Khairani                             1605106010019
  •  Elya Sukmawati                              1605106010022
  •  Dian Kamisna                                 1605106010023
  •   Muhibbul Abrar                                1605106010026

      Singkat Tentang Keramik

Perkembangan teknologi material keramik pada saat ini telah diarahkan kepada spesifikasi kegunaannya dalam berbagai kebutuhan, antara lain : kebutuhan rumah tangga, industri mekanik, elektronika, cordierite, refraktori, teknologi ruang angkasa, keramik berpori , dan lain sebagainya.
Industri keramik telah bermula dalam tahun 4500 sebelum Masehi yang di usahakan oleh penduduk di perkampungan neolitik di dalam daerah Shanxi di negeri China. Industri keramik pada masa itu hanya tertumpu pada penghasilan tembikar.Tembikar tertua di temui di England, dapat di kesan kembali pada pertama tahun masehi dan penaklukan Roma. Antara masa itu dan 1500 tahun Masehi, perkembangan yang paling penting adalah porselin yang dapat memantulkan cahaya. Aktiviti di England bermula dengan tembikar eistercian pada awal abad ke enam belas. Abad ketujuh belas mulai nampak permulaan industri tembikar Inggris melalui Tofst bersaudara yang membuat tembikar slip di Staffordshire. Dalam abad ke delapan belas menampakkan bibit perkembangan yang telah menjadikan industri tembikar sebagaimana yang terdapat pada hari ini.

      A.       Definisi
Keramik pada awalnya berasal dari bahasa Yunani,keramikos, yang artinya suatu bentuk dari tanah liat yang telah mengalami proses pembakaran. Kamus dan ensiclopedia tahun 1950-an mendefinisikan keramik sebagai suatu hasil seni dan teknologi untuk menghasilkan barang dari tanah liat yang dibakar seperti gerabah, genteng, porselin, dan sebagainya. Tetapi saat ini tidak semua keramik berasal dari tanah liat. Definisi pengertian keramik terbaru mencakup semua bahan bukan logam dan anorganik yang berbentuk padat. (Yusuf, 1998;2)

      B. Komposisi Keramik
Komposisi keramik pada umumnya terdiri dari 4 : Tanah Liat (clay), Kwarsa (flint), feldsfar, dan serbuk kaca (cullet).
     1. Clay/tanah liat 
         Clay/tanah liat mengandung hidrated aluminum silica (Al2O3.2SiO2.2H2O)
     Tanah liat sebagai bahan pokok untuk pembuatan keramik, merupakan salah satu bahan yang kegunaan nya sangat menguntungkan bagi manusia karena bahannya yang mudah didapat dan pemakaian hasilnya yang sangat luas. Kira-kira 70% atau 80% dari kulit bumi terdiri dari batuan merupakan sumber tanah liat. Tanah liat banyak ditemukan di areal pertanian terutama persawahan. Dilihat dari sudut ilmu kimia, tanah liat termasuk hidrosilikat alumina dan dalam keadaan murni mempunyai rumus: Al2O3.2SiO2.2H2O  dengan perbandingan berat dari unsur-unsurnya: Oksida Silinium (SiO2) 47%, Oksida Aluminium (Al2O3) 39%, dan Air (H2O) 14% (Gatot, 2003 dalam Abdullah, 2005).
Bentuknya seperti lempengan kecil-kecil hampir berbentuk segi enam dengan permukaan yang datar. Bentuk kristal; seperti ini menyebabkan tanah liat bila dicampur dengan air mempunyai sifat liat (plastis), mudah dibentuk karena kristal-kristal ini meluncur di atas satu dengan yang lain denga air sebagai pelumasnya (Astuti, 1997 dalam Trisnawanti, 2008).
Tanah liat memiliki sifat-sifat yang khas yaitu bila dalam keadaan basah  mempunyai sifat plastis tetapi bila dalam keadaan kering akan menjadi keras, sedangkan bila dibakar akan menjadi padat dan kuat. Pada umumnya, masyarakat memanfaatkan tanah liat (lempung) sebagai bahan baku pembuatan bata dan gerabah.
Dari penjelasan mengenai tanah liat diatas, dapat disimpulkan :
     a. fungsi tanah liat                :
mempermudah proses pembentukan keramik
     b. Sifat dan keadaan bahan   :
       -  berbutir kasar
       -   rapuh
       -   dalam keadaan basah  mempunyai sifat plastis tetapi bila dalam keadaan kering akan menjadi keras
        -   bila dibakar akan menjadi padat dan kuat
        -   sangat tahan api
     2.      Kwarsa (flint) 
     Kwarsa merupakan bentuk lain dari batuan silica (SiO2)
Tujuan pemakaian kwarsa ini ialah:
     a. Mengurangi susut kering, jadi mengurangi retak-retak dalam pengeringan.
     b. Mengurangi susut waktu dibakar dan mempertinggi kwalitas.
     c. Merupakan rangka selama pembakaran.
     d. Sifat-sifat dan keadaan bahan :
     -   Memiki ukuran partikel yang halus .
     -    Sifat plastis yang tinggi .
     -   Memiliki kekuatan kering yang tinggi
     -    Penyusutan pada saat pengeringan dan pembakaran tinggi.
     -    Warna setelah pembakaran abu-abu muda karena unsur besinya lebih tinggi dibanding kaolin.
     -   titik lebur tinggi sekitar 1728°C
      3. Cullet
      Cullet adalah serbuk kaca yang sangat kecil. Kaca biasanya dihasilkan dari campuran silicon atau bahan dioksida (SiO2) yang merupakan benda amorf, dibentuk melalui prosesan pemadatan dari peleburan tanpa kristalisasi. Kaca kadang-kadang dianggap sebagai cairan kental (viskos) kareana bukan kristalin atau amorf. Akan tetapi hanya beberapa cairan yang dapat membentuk kaca. Pada suhu tinggi, kaca merupakan cairan sejati, dan pada fase cair ini struktur dari bahan-bahan anorganik belum beraturan dan atom-atomnya selalu bergerak terus-menerus.
      4. Feldspar 
     adalah suatu kelompok mineral yang berasal dari batu karang yang ditumbuk dan dapat memberikan sampai 25 % flux (pelebur) pada badan keramik. Bila keramik dibakar, feldspar akan meleleh (melebur) dan membentuk leburan gelas yang menyebabkan partikel tanah dan bahan lainnya melekat satu sama lain. Pada saat membeku, bahan ini memberikan kekuatan pada badan keramik. Feldspar tidak larut dalam air, mengandung alumina, silika dan flux yang digunakan untuk membuat gelasir suhu tinggi.   

 C.Sifat Keramik
Keramik memiliki sifat kimia, mekanik, fisika, panas, elektrik, dan magnetik yang membedakan mereka dari material lain seperti logam dan plastik. Industri keramik merubah sifat keramik dengan cara mengontrol jenis dan jumlah material yang digunakan untuk pembuatan.
      A.Sifat Kimia
Keramik industri sebagian besar adalah oksida (senyawa ikatan oksigen), akan tetapi ada juga senyawa carbida (senyawa ikatan karbon dan logam berat), nitrida (senyawa ikatan nitrogen), borida (senyawa ikatan boron) dan silida (senyawa ikatan silikon). Sebagai contoh, pembuatan keramik alumina menggunakan 85 sampai 99 persen aluminum oksida sebagai bahan utama dan dikombinasikan dengan berbagai senyawa kompleks secara kimia. Beberapa contoh senyawa kompleks adalah barium titanate (BaTiO3) dan zinc ferrite (ZnFe2O4). Material lain yang dapat disebut juga sebagai jenis keramik adalah berlian dan graphite dari karbon.
Keramik lebih resisten terhadap korosi dibanding plastik dan logam. Keramik biasanya tidak bereaksi dengan sebagian besar cairan, gas, aklali dan asam. Jenis-jenis keramik memiliki titik leleh yang tinggi dan beberapa diantaranya masih dapat digunakan pada temperatur mendekati titik lelehnya. Keramik juga stabil dalam waktu yang lama.
      B. Sifat Mekanik
Ikatan keramik dapat dibilang sangat kuat, dapat kita lihat dari kekakuan ikatan dengan mengukur kemampuan keramik menahan tekanan dan kelengkungan. Bend Strength atau jumlah tekanan yang diperlukan untuk melengkungkan benda biasanya digunakan untuk menentukan kekuatan keramik. Salah satu keramik yang keras adalah Zirconium dioxide yang memiliki bend strength mendekati senyawa besi. Zirconias (ZrO2) mampu mempertahankan kekuatannya hingga temperatur 900oC (1652oF), dan bahkan silikon carbida dan silikon nitrida dapat mempertahankan kekuatannya pada temperatur diatas 1400oC (2552oF). Material-material silikon ini biasanya digunakan pada peralatan yang memerlukan panas tinggi seperti bagian dari Gas-Turbine Engine. Walaupun keramik memiliki ikatan yang kuat dan tahan pada temperatur tinggi, material ini sangat rapuh dan mudah pecah bila dijatuhkan atau ketika dipanaskan dan didinginkan seketika.
      C. Sifat Fisik
Sebagian besar keramik adalah ikatan dari karbon, oksigen atau nitrogen dengan material lain seperti logam ringan dan semilogam. Hal ini menyebabkan keramik biasanya memiliki densitas yang kecil. Sebagian keramik yang ringan mungkin dapat sekeras logam yang berat. Keramik yang keras juga tahan terhadap gesekan. Senyawa keramik yang paling keras adalah berlian, diikuti boron nitrida pada urutan kedua dalam bentuk kristal kubusnya. Aluminum oksida dan silikon karbida biasa digunakan untuk memotong, menggiling, menghaluskan dan menghaluskan material-material keras lain.
      D.Sifat Panas
Sebagian besar keramik memiliki titik leleh yang tinggi, artinya walaupun pada temperatur yang tinggi material ini dapat bertahan dari deformasi dan dapat bertahan dibawah tekanan tinggi. Akan tetapi perubahan temperatur yang besar dan tiba-tiba dapat melemahkan keramik. Kontraksi dan ekspansi pada perubahan temperatur tersebutlah yang dapat membuat keramik pecah. Silikon karbida dan silikon nitrida lebih dapat bertahan dari kontraksi dan ekspansi pada perubahan temperatur tinggi daripada keramik-keramik lain. Oleh karena itu material ini digunakan pada bagian-bagian mesin seperti rotor pada turbin dalam mesin jet yang memiliki variasi perubahan temperatur yang ekstrim.
      E.Sifat Elektrik
Beberapa jenis keramik dapat menghantarkan listrik. Contohnya Chromium dioksida yang mampu menghantarkan listrik sama baiknya dengan sebagian besar logam. Jenis keramik lain seperti silikon karbida, kurang dapat menghantarkan listrik tapi masih dapat dikatakan sebagai semikonduktor. Keramik seperti aluminum oksida bahkan tidak menghantarkan listrik sama sekali. Beberapa keramik seperti porcelain dapat bertindak sebagai insulator (alat untuk memisahkan elemen-elemen pada sirkuit listrik agar tetap pada jalurnya masing-masing) pada temperatur rendah tapi dapat menghantarkan listrik pada temperatur tinggi.
      F.Sifat Magnetik
Keramik yang mengandung besi oksida (Fe2O3) dapat memiliki gaya magnetik mirip dengan magnet besi, nikel dan cobalt. Keramik berbasis besi oksida ini biasa disebut ferrite. Keramik magnetis lainnya adalah oksida-oksida nikel, senyawa mangan dan barium. Keramik ber-magnet biasanya digunakan pada motor elektrik dan sirkuit listrik dan dapat dibuat dengan resistensi tinggi terhadap demagnetisasi. Ketika elektron-elektron disejajarkan sedemikian rupa, keramik dapat menghasilkan medan magnet yang sangat kuat dan sukar demagnetisasi (menghilangkan medan magnet) dengan memecah barisan elektron tersebut.

       D. Jenis-jenis Keramik
Material yang digunakan untuk membuat keramik ini biasanya digali dari perut bumi dan dihancurkan hingga menjadi bubuk. Produsen seringkali memurnikan bubuk ini dengan mencampurkannya dengan suatu larutan hingga terbantuk endapan pengotor. Kemudian endapan tadi disaring dan bubuk material keramik dipanaskan untuk menghilangkan impuritis dan air. Hasilnya, bubuk dengan tingkat kemurnian tinggi dan berukuran sekitar 1 µm (0.0001 cm).
Keramik dapat dibagi menjadi dua, yaitu :
      1. Keramik tradisional
  Keramik tradisional yaitu keramik yang dibuat dengan menggunakan bahan alam, seperti kuarsa, kaolin, dll. Yang termasuk keramik ini adalah: barang pecah belah (dinnerware), keperluan rumah tangga (tile, bricks), dan untuk industri (refractory). Untuk pengolahnnya terbagi kedalam beberapa proses yaitu:
      1. Pengolahan bahan
Tujuan pengolahan bahan ini adalah untuk mengolah bahan baku dari berbagai material yang belum siap pakai menjadi badan keramik plastis yang telah siap pakai. Pengolahan bahan dapat dilakukan dengan metode basah maupun kering, dengan cara manual ataupun masinal. Didalam pengolahan bahan ini ada proses-proses tertentu yang harus dilakukan antara lain pengurangan ukuran butir, penyaringan, pencampuran, pengadukan (mixing), dan pengurangan kadar air. Pengurangan ukuran butir dapat dilakukan dengan penumbukan atau penggilingan dengan ballmill. Penyaringan dimaksudkan untuk memisahkan material dengan ukuran yang tidak seragam. Ukuran butir biasanya menggunakan ukuran mesh. Ukuran yang lazim digunakan adalah 60 – 100 mesh.
Pencampuran dan pengadukan bertujuan untuk mendapatkan campuran bahan yang homogen/seragam. Pengadukan dapat dilakukan dengan cara manual maupun masinal dengan blunger maupun mixer.
Pengurangan kadar air dilakukan pada proses basah, dimana hasil campuran bahan yang berwujud lumpur dilakukan proses lanjutan, yaitu pengentalan untuk mengurangi jumlah air yang terkandung sehingga menjadi badan keramik plastis. Proses ini dapat dilakukan dengan diangin-anginkan diatas meja gips atau dilakukan dengan alat filterpress.
Tahap terakhir adalah pengulian. Pengulian dimaksudkan untuk menghomogenkan massa badan tanah liat dan membebaskan gelembung-gelembung udara yang mungkin terjebak. Massa badan keramik yang telah diuli, disimpan dalam wadah tertutup, kemudian diperam agar didapatkan keplastisan yang maksimal.
       2. Pembentukan
     Tahap pembentukan adalah tahap mengubah bongkahan badan tanah liat plastis menjadi benda-benda yang dikehendaki. Ada tiga keteknikan utama dalam membentuk benda keramik: pembentukan tangan langsung (handbuilding), teknik putar (throwing), dan teknik cetak (casting).
·     Pembetukan tangan langsu
Dalam membuat keramik dengan teknik pembentukan tangan langsung, ada beberapa metode yang dikenal selama ini: teknik pijit (pinching), teknik pilin (coiling), dan teknik lempeng (slabbing).

·     Pembentukan dengan teknik putar
  Pembentukan dengan teknik putar adalah keteknikan yang paling mendasar dan merupakan kekhasan dalam kerajinan keramik. Karena kekhasannya tersebut, sehingga keteknikan ini menjadi semacam icon dalam bidang keramik. Dibandingkan dengan keteknikan yang lain, teknik ini mempunyai tingkat kesulitan yang paling tinggi. Seseorang tidak begitu saja langsung bisa membuat benda keramik begitu mencobanya. Diperlukan waktu yang tidak sebentar untuk melatih jari-jari agar terbentuk ’feeling’ dalam membentuk sebuah benda keramik. Keramik dibentuk diatas sebuah meja dengan kepala putaran yang berputar. Benda yang dapat dibuat dengan keteknikan ini adalah benda-benda yang berbentuk dasar silinder: misalnya piring, mangkok, vas, guci dan lain-lain. Alat utama yang digunakan adalah alat putar (meja putar). Meja putar dapat berupa alat putar manual mapupun alat putar masinal yang digerakkan dengan listrik.
   Secara singkat tahap-tahap pembentukan dalam teknik putar adalah: centering (pemusatan), coning (pengerucutan), forming (pembentukan), rising (membuat ketinggian benda), refining the contour (merapikan).
·      Pembentukan dengan teknik cetak
 Dalam keteknikan ini, produk keramik tidak dibentuk secara langsung dengan tangan; tetapi menggunakan bantuan cetakan/mold yang dibuat dari gipsum. Teknik cetak dapat dilakukan dengan 2 cara: cetak padat dan cetak tuang (slip). Pada teknik cetak padat bahan baku yang digunakan adalah badan tanah liat plastis sedangkan pada teknik cetak tuang bahan yang digunakan berupa badan tanah liat slip/lumpur. Keunggulan dari teknik cetak ini adalah benda yang diproduksi mempunyai bentuk dan ukuran yang sama persis. Berbeda dengan teknik putar atau pembentukan langsung
      3. Pengeringan
Setelah benda keramik selesai dibentuk, maka tahap selanjutnya adalah pengeringan. Tujuan utama dari tahap ini adalah untuk menghilangkan air plastis yang terikat pada badan keramik. Ketika badan keramik plastis dikeringkan akan terjadi 3 proses penting: (1) Air pada lapisan antarpartikel lempung mendifusi ke permukaan, menguap, sampai akhirnya partikel-partikel saling bersentuhan dan penyusutan berhenti; (2) Air dalam pori hilang tanpa terjadi susut; dan (3) air yang terserap pada permukaan partikel hilang. Tahap-tahap ini menerangkan mengapa harus dilakukan proses pengeringan secara lambat untuk menghindari retak/cracking terlebih pada tahap 1. Proses yang terlalu cepat akan mengakibatkan keretakkan dikarenakan hilangnya air secara tiba-tiba tanpa diimbangi penataan partikel tanah liat secara sempurna, yang mengakibatkan penyusutan mendadak.
Untuk menghindari pengeringan yang terlalu cepat, pada tahap awal benda keramik diangin-anginkan pada suhu kamar. Setelah tidak terjadi penyusutan, pengeringan dengan sinar matahari langsung atau mesin pengering dapat dilakukan.
      4. Pembakaran
Pembakaran merupakan inti dari pembuatan keramik dimana proses ini mengubah massa yang rapuh menjadi massa yang padat, keras, dan kuat. Pembakaran dilakukan dalam sebuah tungku (furnace) suhu tinggi. Ada beberapa parameter yang mempengaruhi hasil pembakaran: suhu sintering (matang), atmosfer tungku dan mineral yang terlibat.
Pada proses pemanasan, partikel-partikel bubuk menyatu dan memadat. Proses pemadatan ini menyebabkan objek keramik menyusut hingga 20 persen dari ukuran aslinya. Tujuan dari proses pemanasan ini adalah untuk memaksimalkan kekerasan keramik dengan mendapatkan struktur internal yang tersusun rapih dan sangat padat (Sumahamijaya, 2009).
Pembakaran biskuit
Pembakaran biskuit merupakan tahap yang sangat penting karena melalui pembakaran ini suatu benda dapat disebut sebagai keramik. Biskuit (bisque) merupakan suatu istilah untuk menyebut benda keramik yang telah dibakar pada kisaran suhu 700 – 1000oC. Pembakaran biskuit sudah cukup membuat suatu benda menjadi kuat, keras, kedap air. Untuk benda-benda keramik berglasir, pembakaran biskuit merupakan tahap awal agar benda yang akan diglasir cukup kuat dan mampu menyerap glasir secara optimal.
      5. Pengglasiran
Pengglasiran merupakan tahap yang dilakukan sebelum dilakukan pembakaran glasir. Benda keramik biskuit dilapisi glasir dengan cara dicelup, dituang, disemprot, atau dikuas. Untuk benda-benda kecil-sedang pelapisan glasir dilakukan dengan cara dicelup dan dituang; untuk benda-benda yang besar pelapisan dilakukan dengan penyemprotan. Fungsi glasir pada produk keramik adalah untuk menambah keindahan, supaya lebih kedap air, dan menambahkan efek-efek tertentu sesuai keinginan.
Kesemua proses dalam pembuatan keramik akan menentukan produk yang dihasilkan. Oleh karena itu kecermatan dalam melakukan tahapan demi tahapan sangat diperlukan untuk menghasilkan produk yang memuaskan.
      2. Keramik halus (keramik industri)
  Fine ceramics (keramik modern atau biasa disebut keramik teknik, advanced ceramic, engineering ceramic, techical ceramic) adalah keramik yang dibuat dengan menggunakan oksida-oksida logam atau logam, seperti: oksida logam (Al2O3, ZrO2, MgO,dll). Penggunaannya: elemen pemanas, semikonduktor, komponen turbin, dan pada bidang medis.
Adapun tahapan dalam pembuatan keramik secara industri diantaranya:
 1. Pembentukan
Setelah pemurnian, sedikit wax (lilin) biasanya ditambahkan untuk meekatkan bubuk keramik dan menjadikannya mudah dibentuk. Plastik juga dapat ditambahkan untuk mendapatkan kelenturan dan kekerasan tertentu. Bubuk tersebut dapat menjadi bentuk yang berbeda-beda dengan beragam proses pembentukan (molding). Proses pembentukan ini diantaranya adalah slip casting, pressure casting, injection molding, dan extruction. Setelah dibentuk, keramik kemudian dipanaskan dengan proses yang dikenal dengan nama densifikasi (densification) agar material yang terbantuk lebih kuat dan padat.
      1. Slip Casting.
   Slip Casting adalah proses untuk membuat keramik yang berlubang. Proses ini menggunakan cetakan dengan dinding yang berlubang-lunagng kecil dan memanfaatkan daya kapilaritas air.
       2. Pressure Casting.
  Pada proses ini, bubuk keramik dituangkan pada cetakan dan diberi tekanan. Tekanan tersebut membuat bubuk keramik menjadi lapisan solid keramik yang berbentuk seperti cetakan.
       3. Injection Molding.
   Proses ini digunakan untuk membuat objek yang kecil dan rumit. Metode ini menggunaan piston untuk menekan bubuk keramik melalui pipa panas masuk ke cetakan. Pada cetakan tersebut, bubuk keramik didinginkan dan mengeras sesuai dengan bentuk cetakan. Ketika objek tersebut telah mengeras, cetakan dibuka dan bagian keramik dipisahkan.
       4. Extrusion.
   Extrusion adalah proses kontinu yang mana bubuk keramik dipanaskan didalam sebuah tong yang panjang. Terdapat baling-baling yang memutar dan mendorong material panas tersebut kedalam cetakan. Karena prosesnya yang kontinu, setelah terbentuk dan didinginkan, keramik dipotong pada panjang tertentu. Proses ini digunakan untuk membuat pipa keramik, ubin dan bata modern.
       2. Densifikasi
Proses densifikasi menggunakan panas yang tinggi untuk menjadikan sebuah keramik menjadi produk yang keras dan padat. Setelah dibentuk, keramik dipanaskan pada tungku (furnace) dengan temperatur antara 1000 sampai 1700oC. Pada proses pemanasan, partikel-partikel bubuk menyatu dan memadat. Proses pemadatan ini menyebabkan objek keramik menyusut hingga 20% dari ukuran aslinya. Tujuan dari proses pemanasan ini adalah untuk memaksimalkan kekerasan keramik dengan mendapatkan struktur internal yang tersusun rapih dan sangat padat.
Kegunaan Keramik Industri
Keramik dinilai dari propertinya. Kegunaan keramik beragam disesuaikan dengan kemampuan dan daya tahannya. Keramik dengan properti elektrik dan magnetik dapat digunakan sebagai insulator, semikoncuktor, konduktor dan magnet. Keramik dengan properti yang berbeda dapat digunakan pada aerospace, biomedis, konstruksi bangunan, dan industri nuklir.

E.Bahan Baku Dasar
            Tiga bahan baku utama yang digunakan untuk membuat produk keramik klasik, atau ‘triaksial’, adalah lempung, feldspar dan pasir. Lempung adalah aluminium silikat hidrat yang tidak terlalu murni yang terbentuk sebagai hasil pelapukan dari batuan beku yang mengandung feldspar sebagai salah satu mineral asli yang penting. Reaksinya dapat dilukiskan sebagai berikut :
K2O.Al2SO3.6SiO2 + CO2 + 2H2O → K2CO3 + Al2O3.2SiO2.2H2O + 4SiO2
Ada sejumlah speises mineral yang disebut mineral lempung (clay mineral) yang mengandung terutama campuran kaolinit (Al2O3.2SiO2.2H2O), montmorilonit [(Mg,Ca)O.Al2O3.5SiO2.nH2O] dan ilit (K2O, MgO, Al2O3, SiO2.2H2O) masing-masing dalam berbagai kuantitas. Dari sudut pandang keramik, lempung berwujud plastik dan bias dibentuk bila cukup halus dan basah, kaku bila kering, dan kaca (vitreous) bila dibakar pada suhu yang cukup tinggi. Prosedur pembuatannya mengandalkan kepada sifat-sifat tersebut diatas.
         Di dalam lempung yang diperdagangkan, disamping mineral lempung terdapat pula feldspar, kuarsa dan berbagai ketidakmurnian seperti oksida-oksida besi, semuanya dalam jumlah yang beragam. Dalam hampir semua lempung yang digunakan di dalam industri keramik, mineral lempung dasar adalah kaolinit, walaupun lempung bentonit yang berdasarkan atas montmorilonit digunakan juga sedikit untuk memberikan sifat plastisitas yang sangat tinggi bila perlu. Sifat plastisitas ini sangat dipengaruhi oleh kondisi fisik lempung, dan sangat berbeda-beda pada berbagai jenis lempung. Lempung sangat beraneka ragam dalam sifat fisiknya, dan dalam kandungan ketidakmurniannya, sehingga biasanya harus ditingkatkan mutunya terlebih dahulu melalui prosedur benefisiasi.
       Ada tiga jenis feldspar yang umum, yaitu potas (K2O.Al2O3.SiO2), soda (NaO.Al2O3.6SiO2), batua gamping (CaO.Al2O3.6SiO2), yang semuanya dipakai dalam produk keramik. Feldspar sangat penting sebagai pemberi sifat fluks dalam formulasi keramik. Feldspar bias terdapat di dalam lempung hasil penambangan, atau bisa juga ditambahkan sesuai keperluan.
            Penyusun keramik yang ketiga yang penting adalah pasir atau flin (flint). Sifat-sifatnya yang penting dari segi industri keramik ditunjukkan pada table berikut :

Kaolinit
Feldspar
Pasir (flin)
Rumus
Plastisitas
Fusibilitas (keleburan)
Titik cair
Ciut pada pembakaran
Al2O3.2SiO2.2H2O
Plastik
Refraktori
1785oC
Sangat ciut
K2O.Al2O3.6SiO2
Non plastik
Perekat mudah lebur
1150oC
Lebur
SiO2
Non plastik
Refraktori
1710oC
Tidak ciut

Contoh benda yang terbuat dari keramik :
1. Guci 

2. Vas 

3. Celengan


4. Asbak


5. Miniatur 

6. Gelas 
 











Komentar

Postingan populer dari blog ini

Proses Dasar Pembuatan aluminium

Thermoforming